论文部分内容阅读
针对当前网络社交活动个性化推荐精度较低的问题,融合用户对活动兴趣度、召集者影响力以及地理位置偏好等三方面因素,提出一种融合多因素社交活动个性推荐模型。采用LDA文件主题模型求取用户与其参加过的所有社交活动的主题分布,利用隐含主题概率分布来表征用户的兴趣度,并构建用户与召集者间的影响力矩阵。根据活动举办地与用户常住地,建立距离幂律分布,并结合用户参加活动的频数,建立用户地理位置偏好概率模型。采用不同权值配比,综合三方面的因素形成最终的社交活动个性推荐。对比实验表明,该算法与三个因素个性推荐算法相比,准