论文部分内容阅读
给定连通图集合Φ,对图G的生成子图F,如果F的每个分支都同构于集合Φ的一个元素,则F被称为G的Φ-因子。最近Kawarabayashi等证明了:2-连通立方图有一个{Cn|n≥4}-因子和{pn|n≥6}-因子,其中Cn表示阶为n的圈,Pn表示阶为n的路。Kano等给出了每一个阶至少为8的立方偶图有{Cn|n≥6}-因子和{pn|n≥8}-因子的结论,并且提出猜想:阶至少为6的3-连通立方图有{Cn|n≥5}-因子和{pn|n≥7}-因子。现给出这个猜想的证明。