论文部分内容阅读
Flowering at the most appropriate times of the year requires careful monitoring of environmental conditions and correct integration of such information with an endogenous molecular network. Rice (Oryza sativa) is a facultative short day plant, and flowers quickly under short day lengths, as opposed to Arabidopsis thaliana whose flowering is accelerated by longer days. Despite these physiological differences, several genes controlling flowering in response to day length (or photoperiod) are conserved between rice and Arabidopsis, and the molecular mechanisms involved are similar. Inductive day lengths trigger expression of florigenic proteins in leaves that can move to the shoot apical meristem to induce reproductivedevelopment. As compared to Arabidopsis, rice also possesses unique factors that regulate expression of florigenic genes. Here, we discuss recent advances in understanding the molecular mechanisms involved in day length perception, production of florigenic signals, and molecular responses of the shoot apical meristem to florigenic proteins.
Flowering at the most appropriate times of the year requires careful monitoring of environmental conditions and correct integration of such information with an endogenous molecular network. Rice (Oryza sativa) is a facultative short day plant, and flowers quickly under short day lengths, as opposed to Despite these physiological differences, several genes controlling flowering in response to day length (or photoperiod) are conserved between rice and Arabidopsis, and the molecular mechanisms involved are similar. Inductive day lengths trigger expression of florigenic proteins in leaves that can move to the shoot apical meristem to inductive reproductive development. As compared to Arabidopsis, rice also possesses unique factors that regulate expression of florigenic genes. Here, we discuss recent advances in understanding the molecular mechanisms involved in day length perception, production of florigenic signals, and molec ular responses of the shoot apical meristem to florigenic proteins.