论文部分内容阅读
Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the continuous esterification process of polyester polyols was developed, which was carried out in an innovational bubbling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2m was applied for the esterification process of poly (ethylene adipate) (PEA). In the continuous operation, linear oligomers were discharged from the bottom of the column, while water passed a few column trays and a packing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for developing and optimizing this process.
Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the continuous esterification process of polyester polyols was developed, which was carried out in an innovational bubbling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification Between ethylene glycol and adipic acid was rapidly and rapidly. A bench BRDT with the height of 2m was applied for the esterification process of poly (ethylene adipate) (PEA). In the continuous operation, linear oligomers were discharged from the bottom of the column, while water passed a few column trays and a packing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for developing and optimizing this process .