论文部分内容阅读
Due to the openness of the cognitive radio network, spectrum sensing data falsification (SSDF) can attack the spectrum sensing easily, while there is no effective algorithm proposed in current research work, so this paper introduces the malicious users removing to the weight sequential probability radio test (WSPRT). The terminals’ weight is weighted by the accuracy of their spectrum sensing information, which can also be used to detect the malicious user. If one terminal owns a low weight, it can be treated as malicious user, and should be removed from the aggregation center. Simulation results show that the improved WSPRT can achieve higher performance compared with the other two conventional sequential detection methods under different number of malicious users.
Due to the openness of the cognitive radio network, spectrum sensing data falsification (SSDF) can attack the spectrum sensing easily, while there is no effective algorithm proposed in current research work, so this paper introduces the malicious users removing to the weight sequential probability radio test (WSPRT). The terminals’ weight is weighted by the accuracy of their spectrum sensing information, which can also be used to detect the malicious user. If one terminal owns a low weight, it can be treated as malicious user, and should be removed from the aggregation center. Simulation results show that the improved WSPRT can achieve higher performance compared with the other two conventional sequential detection methods under different number of malicious users.