论文部分内容阅读
In order to improve the performance of optical wavelength-selective switches based on double micro-ring resonators, an asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) structure is utilized as the active light guiding medium. The AICD-SQW active layer has advantages, such as large change range in absorption coefficient, high extinction ratio, large Stark shift and very low insertion. For predicting the switching characteristics of double ring resonators structure, the absorption coefficient and real refractive index changes of the AICD-SQW active layer are calculated for different applied electric fields for TE input light polarization. Simulation results show that switching characteristics strongly depend on changes in absorption coefficient and real refractive index of active layer. In addition, isolations of 37.44 dB and 26.84 dB are realized between drop and through ports, when drop and through ports are ON and OFF, respectively, and vice versa.
In order to improve the performance of optical wavelength-selective switches based on double micro-ring resonators, an asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) structure is utilized as the active light guiding medium. SQW active layer has advantages, such as large change range in absorption coefficient, high extinction ratio, large Stark shift and very low insertion. For predicting the switching characteristics of double ring resonators structure, the absorption coefficient and real refractive index changes of the AICD- SQW active layers are calculated for different applied electric fields for TE input light polarization. Simulation results show that switching characteristics strongly depend on changes in absorption coefficient and real refractive index of active layer. In addition, isolations of 37.44 dB and 26.84 dB are realized between drop and through ports, when drop and through ports are ON and OFF, respectively, and vice versa.