论文部分内容阅读
水稻是我国的主要粮食作物,利用高光谱遥感技术在水稻未成熟之前对水稻产量进行监测,一方面可以及时调整栽培管理方式,指导合理追肥,另一方面,可以准确掌握水稻的产量信息,帮助政府提前做出决策。以2019年—2020年广州市白云区钟落潭试验基地氮肥梯度实验为基础,分别获取水稻分化期和抽穗期冠层高光谱数据、作物群体长势参数(生物量、叶面积指数)及作物养分吸收量,利用贝叶斯岭回归(BRR)、支持向量回归(SVR)、偏最小二乘回归(PLSR)三种方法建立各生育期的产量监测模型并进行精度对比,确定水稻产量的最优估算时期和最佳估测模型。结果表明,三种方法中,BRR和SVR方法更适合产量监测,在不同时期及不同的参数组合下均有较好的表现(R~2>0.82, NRMSE<8.22%);基于2019年与2020年数据,采用全波段光谱信息进行产量监测时,分化期最佳监测模型为BRR模型,R~2为0.90,抽穗期最优监测模型为SVR模型,R~2为0.87;采用全波段光谱协同作物群体长势参数进行产量监测时,两时期最佳监测模型均为BRR模型,R~2分别达到0.90和0.92;相较于BRR模型和SVR模型,PLSR模型在不同时期和不同参数组合下,最高R~2仅为0.75;基于2020年数据,以三种不同的参数组合作为输入时,两时期估算结果均为BRR模型最优,且分化期建模精度高于抽穗期(R~2至少增加0.02, NRMSE至少降低0.61%);当输入参数组合为全波段光谱协同作物群体长势参数、作物养分吸收量时,BRR模型对产量的估算精度达到最高,R~2为0.94。分析认为产量的最优监测时期是分化期,最优监测模型为BRR模型。研究结果可为水稻产量的早期遥感监测提供参考。