论文部分内容阅读
短期电力负荷预测的准确性对智能电网平稳高效运行 具有重要意义,但多种因素影响下的负荷数据具有较强的非平稳性与随机波动性,使得高精度的短期电力负荷预测面临挑战。为充分挖掘负荷序列中的趋势特征与周期性特征,准确提取与电力负荷存在潜在相关性的辅助信息特征,提升短期电力负荷预测精度,该文提出了一种基于N-BEATS与辅助编码器的短期电力负荷预测模型。该模型包含两个并行的编码器,基于神经基扩展分析(neural basis expansion analysis,N-BEATS)模型的负荷特征编码器和基于多头注意力机制的辅助信息编码器,分别用于学习负荷数据中的时序特征与辅助信息特征。同时,构建特征融合模块将时序特征和辅助信息特征构造成联合特征向量,并设计基于GRU单元的预测解码器模块进行短期电力负荷预测。在GEFCom2014公开数据集上进行实验,结果表明所提方法与长短期记忆(long short-term memory,LSTM)网络模型、CNN-LSTM网络模型,Seq2Seq网络模型、季节自回归差分移动平均(seasonal autoregressive integrated moving average,SARIMA)模型及支持向量回归模型(support vector returns,SVR)等基线模型相比,在预测精度方面具有明显优势,MAPE指标平均提升了24.16%。