论文部分内容阅读
半监督复合核支持向量机在构造聚类核时,普遍存在复杂度高、不适于大规模图像分类的问题;且K均值(K-means)图像聚类的参数难以估计。针对上述问题,提出基于均值漂移(Mean-Shift)参数自适应的半监督复合核支持向量机图像分类方法。结合Mean-Shift对像素点进行聚类分析以避免K-means图像聚类的局限性;利用图像的结构特征自适应算法参数以避免算法的波动性;由Mean-Shift结果构造Mean Map聚类核以增强同一聚类中的样本属于同一类别的可能性,使复合核更好地指导支持向量机对图像分类