论文部分内容阅读
油中溶解气体分析(DGA)是评估变压器运行状态和故障诊断的重要指标。现将支持向量机算法(SVM)应用于DGA和故障诊断中,并对比了SVM算法和其他传统算法在故障诊断中的正确率。研究结果表明,传统算法的故障诊断正确率在43%~54%,而优化后的SVM算法正确率为76.77%。超过23%的正确率提升充分证明了SVM算法在故障数据特征识别中的先进性,对变压器运维提供了强力的技术支持。