论文部分内容阅读
波段选择是去除高光谱图象段间冗余,实现降维的有效方法。该文提出了一种新的基于分类别主成分分析(PCA)散度的波段选择方法。即首先对训练集各类样本分别进行PCA变换去相关并计算散度,接着分析相应PCA 变换系数获得对各类样小分类都重要的原始波段,在综合考虑波段的相关度,散度和子集规模的基础上获得最终选择波段。复杂度分析表明该方法较局部寻优的前向搜索计算量大为降低,提高了效率,并用高光谱遥感图象的分类实验进行了验证。