论文部分内容阅读
针对传统的kNN(k-NearestNeighbor)近邻填补算法对缺失数据的填补效果会因为k最近邻数据存在噪声受到较大干扰的问题,提出一种基于kNN-DBSCAN(k-NearestNeighbor Density-based Spatial Clustering of Applications with Noise)的缺失数据填补优化算法。将基于密度的DBSCAN聚类算法运用到kNN近邻填补算法中,先用kNN算法得到目标填补数据的原始k最近邻数据集,运用DBSCAN聚类算法对原始k最近邻数据集进行噪声