论文部分内容阅读
摘 要 介绍RTK系统的原理、特点以及RTK测量的技术关键,对RTK技术在当今测绘领域的应用作了一定的分析。
关键词 RTK;工程测量
中图分类号 TU 文献标识码 A 文章编号 1673-9671-(2010)121-0094-01
目前,科学技术的进步和GPS在生产实践中的广泛应用,实时动态测量技术(Real Time Kinematic,简称RTK)以其实时、高效、不受通视条件限制等优点,已广泛应用于工程控制测量、像片控制测量、施工放样测量及地形碎部测量等诸多方面,倍受用户青睐。但是,相对于GPS静态测量,RTK的实时性也给测量人员提出了更高的要求。因为RTK测量缺少必要的检核条件,作业时如果操作失误或某些技术问题处理不当,都将会给测量成果带来严重影响。因此,及时了解RTK的技术特点及提高RTK测量成果精度的关键技术,对RTK测量将大有裨益。
1 RTK系统的原理及特点
1.1 RTK的原理
RTK是以载波相位观测量为根据的实时差分GPS测量,它能够实时地提供测站点在指定坐标系中的厘米级精度的三维定位结果。RTK测量系统通常由3部分组成,即GPS信号接收部分、实时数据传输部分和实时数据处理部分。
RTK测量是根据GPS的相对定位理论,将一台接收机设置在已知点上(基准站),另一台或几台接收机放在待测点上,同步采集相同卫星的信号。基准站在接收GPS信号并进行载波相位测量的同时,通过数据链将其观测值、卫星跟踪状态和测站坐标信息一起传送给移动站移动站通过数据链接收来自基准站的数据,然后利用GPS控制器内置的随机实时数据处理软件与本机采集的GPS观测数据组成差分观测值进行实时处理,实时给出待测点的坐标、高程及实测精度,并将实测精度与预设精度指标进行比较,一旦实测精度符合要求,手簿将提示测量人员记录该点的三维坐标及其精度。
1.2 RTK的特点
1)RTK的误差。RTK测量的误差同GPS静态定位的误差类似,一般可分为两类,即同测站有关的误差和同距离有关的误差。同测站有关的误差包括天线相位中心变化、多径误差、信号干扰和气象因素影响等。其中多径误差是RTK定位测量中最严重的误差。多径误差主要取决于GPS接收机天线周围的环境,若天线周围有高大建筑物或大面积水面时,将对电磁波有强反射作用。即天线接收的信号不但有直接从卫星发射的信号,还有从反射体反射的电磁波,这两种信号叠加作为观测量,将对定位产生误差。通常情况下,多径误差为1~5cm,高反射环境下可达10cm以上,且多径误差的大小常以5~20min的周期性变化,这对RTK测量将产生严重影响。
2)整周模糊值。研究表明,确定整周模糊值(即初始化)的时间和可靠性,是RTK系统能否实时、准确定位的关键。在正常条件下,地面两点间距离较短时,系统能够模拟电离层和对流层的影响,其残余影响也可通过对观测值的差分处理予以消除或减弱。但电离层的电子含量会随时空发生剧烈变化,卫星信号到达基准站和移动站将有不同的影响,且基线越长,影响越大,当电离层剧烈活动时,将导致周跳或失锁,即使是短基线也需要大大延长观测时间才能固定整周模糊值,严重时(如太阳黑子爆发时)甚至根本不能固定整周模糊值。
3)数据链。RTK测量时,移动站需要实时地接收基准站播发的差分信号(观测值及相关数据),才能求定待定点的位置。因此,能否连续地、可靠地接收基准站播放的信号,是RTK能否成功的决定因素,也是制约RTK测程的关键因素。
4)坐标系统。RT K与G P S静态测量一样,G P S接收机接收的卫星信号经数据处理后,首先得到的是地心坐标系(WGS84)坐标,而在测绘工程中应用的通常是地方坐标系的平面直角坐标(1990年西安坐标系、1964年北京坐标系或地方独立坐标系等),其高程一般为正常高。因此,为了把MGS 84坐标系坐标转换为地方坐标系坐标,作业前首先要根据坐标转换关系式求解两种坐标系间的转换参数。
2 RTK测量的技术关键简介
1)坐标转换参数的求解。在GPS静态测量中,不同坐标系的坐标转换是在数据后处理时进行的。而对于RTK测量,要求实时得出待测点在实用坐标系1980年西安坐标系、1954年北京坐标系或地方独立坐标系等)中的坐标,因此,坐标转换问题就显得尤为重要。坐标转换参数的求解方法,一般是在RTK作业前首先在测区做一定数量的静态GPS控制点,与地方坐标系的控制点联测,以同时获取G P S点的M G S 8 4坐标系统坐标和地方坐标系统坐标,然后利用后处理软件或GPS控制器内置的实时处理软件求解坐标转换参数。一般地,在求解坐标转换参数时,应采取不同基准点的匹配方案,用不同的计算方法求得坐标转换参数,经比较后选择残差较小、精度较高的一组参数使用。由于坐标转换参数求解精度与已知点两套坐标的精度和区域内点位的分布有关,因此坐标转换参数是有区域性的,它仅适用于已知点所圈定的区域和临近地区,其外推精度明显低于内插精度。因此,在一个测区求解的坐标转换参数不能直接应用到其它测区。
2)基准站的设置。GPS卫星处在2×104k m多的高空,从卫星发出的信号到接收机接收,中间要经过电离层、对流层以及来自多方面的干扰,其信号一般十分微弱,通常只有-50~-180dB。同时,由于RTK数据链采用超高频(UHF)电磁波,它的传输距离与接收天线的高度、地球曲率半径以及大气折射等因素有关。因此,要提高GPS信号接收的质量,基准站必须远离各种强电磁干扰源);同时,为了减少多路径效应的影响,基准站周围应无明显的大面积的信号反射物;另外,要求基准站电台天线和移动站天线之间无大的遮挡物,且天线应尽量设置高一些,以提高数传电台的传输距离。
3)作业半径的限制。移动站离开基准站的最大距离称作RTK的作业半径,它的大小取决于基准站电台信号的传输距离,且对RTK测量的速度和精度有着直接影响。实验表明,当两山顶能够通视,移动站距基准站47km时,也可收到差分信号。但是,在城镇作业时,如果两点之间有较高的房屋遮挡,即使相距1km也很难进行RTK测量。近年来,随着GPS技术的不断完善,仪器制造商竞相采用先进技术,有效地扩大了RTK的作业范围。
4)RTK测量中的一般要求。为了保证RTK测量的精度、速度(初始化时间)和可靠性,除了正确求解坐标转换参数、合理设置基准站和限制作业半径外,在RTK测量中还应注意以下几点:观测卫星的图形强度要高、作业员的责任心要强、观测成果要注意复核、保证测量精度。
随着RTK技术的不断完善,RTK测量的初始化速度、成果精度及可靠性会越来越高。但是由于受卫星信号、接收机状态、测站周围环境及仪器操作的影响,RTK定位有时会出现失真,其成果不可能100%的可靠。因此,在作业中,要根据RTK技术的特点及测区状况,采取有效措施,严格按操作规程作业,并加强成果的复核,以确保RTK成果的精确性和可靠性。
3 结论
本文对RTK实时动态测量技术的发展作了介绍,并且详细介绍了RTK系统的原理、特点以及系统的要点,对RTK技术在当今测绘领域的应用作了一定的分析。
在GPS技术大力发展的今天,RTK技术在测绘工作中的价值将不断体现,其重要性也会不断增加,希望本文的研究能对同行们起到参考作用,共同为我国的测绘事业做出贡献。
参考文献
[1]吴北平.GPS网络RTK定位原理与数学模型研究,中国地质大学博士论文,2003,3.
[2]李征航,何良化,吴北平.全球定位系统(GPS)技术的最新进展(第二讲)网络RTK,绘信息与工程,2002,2.
关键词 RTK;工程测量
中图分类号 TU 文献标识码 A 文章编号 1673-9671-(2010)121-0094-01
目前,科学技术的进步和GPS在生产实践中的广泛应用,实时动态测量技术(Real Time Kinematic,简称RTK)以其实时、高效、不受通视条件限制等优点,已广泛应用于工程控制测量、像片控制测量、施工放样测量及地形碎部测量等诸多方面,倍受用户青睐。但是,相对于GPS静态测量,RTK的实时性也给测量人员提出了更高的要求。因为RTK测量缺少必要的检核条件,作业时如果操作失误或某些技术问题处理不当,都将会给测量成果带来严重影响。因此,及时了解RTK的技术特点及提高RTK测量成果精度的关键技术,对RTK测量将大有裨益。
1 RTK系统的原理及特点
1.1 RTK的原理
RTK是以载波相位观测量为根据的实时差分GPS测量,它能够实时地提供测站点在指定坐标系中的厘米级精度的三维定位结果。RTK测量系统通常由3部分组成,即GPS信号接收部分、实时数据传输部分和实时数据处理部分。
RTK测量是根据GPS的相对定位理论,将一台接收机设置在已知点上(基准站),另一台或几台接收机放在待测点上,同步采集相同卫星的信号。基准站在接收GPS信号并进行载波相位测量的同时,通过数据链将其观测值、卫星跟踪状态和测站坐标信息一起传送给移动站移动站通过数据链接收来自基准站的数据,然后利用GPS控制器内置的随机实时数据处理软件与本机采集的GPS观测数据组成差分观测值进行实时处理,实时给出待测点的坐标、高程及实测精度,并将实测精度与预设精度指标进行比较,一旦实测精度符合要求,手簿将提示测量人员记录该点的三维坐标及其精度。
1.2 RTK的特点
1)RTK的误差。RTK测量的误差同GPS静态定位的误差类似,一般可分为两类,即同测站有关的误差和同距离有关的误差。同测站有关的误差包括天线相位中心变化、多径误差、信号干扰和气象因素影响等。其中多径误差是RTK定位测量中最严重的误差。多径误差主要取决于GPS接收机天线周围的环境,若天线周围有高大建筑物或大面积水面时,将对电磁波有强反射作用。即天线接收的信号不但有直接从卫星发射的信号,还有从反射体反射的电磁波,这两种信号叠加作为观测量,将对定位产生误差。通常情况下,多径误差为1~5cm,高反射环境下可达10cm以上,且多径误差的大小常以5~20min的周期性变化,这对RTK测量将产生严重影响。
2)整周模糊值。研究表明,确定整周模糊值(即初始化)的时间和可靠性,是RTK系统能否实时、准确定位的关键。在正常条件下,地面两点间距离较短时,系统能够模拟电离层和对流层的影响,其残余影响也可通过对观测值的差分处理予以消除或减弱。但电离层的电子含量会随时空发生剧烈变化,卫星信号到达基准站和移动站将有不同的影响,且基线越长,影响越大,当电离层剧烈活动时,将导致周跳或失锁,即使是短基线也需要大大延长观测时间才能固定整周模糊值,严重时(如太阳黑子爆发时)甚至根本不能固定整周模糊值。
3)数据链。RTK测量时,移动站需要实时地接收基准站播发的差分信号(观测值及相关数据),才能求定待定点的位置。因此,能否连续地、可靠地接收基准站播放的信号,是RTK能否成功的决定因素,也是制约RTK测程的关键因素。
4)坐标系统。RT K与G P S静态测量一样,G P S接收机接收的卫星信号经数据处理后,首先得到的是地心坐标系(WGS84)坐标,而在测绘工程中应用的通常是地方坐标系的平面直角坐标(1990年西安坐标系、1964年北京坐标系或地方独立坐标系等),其高程一般为正常高。因此,为了把MGS 84坐标系坐标转换为地方坐标系坐标,作业前首先要根据坐标转换关系式求解两种坐标系间的转换参数。
2 RTK测量的技术关键简介
1)坐标转换参数的求解。在GPS静态测量中,不同坐标系的坐标转换是在数据后处理时进行的。而对于RTK测量,要求实时得出待测点在实用坐标系1980年西安坐标系、1954年北京坐标系或地方独立坐标系等)中的坐标,因此,坐标转换问题就显得尤为重要。坐标转换参数的求解方法,一般是在RTK作业前首先在测区做一定数量的静态GPS控制点,与地方坐标系的控制点联测,以同时获取G P S点的M G S 8 4坐标系统坐标和地方坐标系统坐标,然后利用后处理软件或GPS控制器内置的实时处理软件求解坐标转换参数。一般地,在求解坐标转换参数时,应采取不同基准点的匹配方案,用不同的计算方法求得坐标转换参数,经比较后选择残差较小、精度较高的一组参数使用。由于坐标转换参数求解精度与已知点两套坐标的精度和区域内点位的分布有关,因此坐标转换参数是有区域性的,它仅适用于已知点所圈定的区域和临近地区,其外推精度明显低于内插精度。因此,在一个测区求解的坐标转换参数不能直接应用到其它测区。
2)基准站的设置。GPS卫星处在2×104k m多的高空,从卫星发出的信号到接收机接收,中间要经过电离层、对流层以及来自多方面的干扰,其信号一般十分微弱,通常只有-50~-180dB。同时,由于RTK数据链采用超高频(UHF)电磁波,它的传输距离与接收天线的高度、地球曲率半径以及大气折射等因素有关。因此,要提高GPS信号接收的质量,基准站必须远离各种强电磁干扰源);同时,为了减少多路径效应的影响,基准站周围应无明显的大面积的信号反射物;另外,要求基准站电台天线和移动站天线之间无大的遮挡物,且天线应尽量设置高一些,以提高数传电台的传输距离。
3)作业半径的限制。移动站离开基准站的最大距离称作RTK的作业半径,它的大小取决于基准站电台信号的传输距离,且对RTK测量的速度和精度有着直接影响。实验表明,当两山顶能够通视,移动站距基准站47km时,也可收到差分信号。但是,在城镇作业时,如果两点之间有较高的房屋遮挡,即使相距1km也很难进行RTK测量。近年来,随着GPS技术的不断完善,仪器制造商竞相采用先进技术,有效地扩大了RTK的作业范围。
4)RTK测量中的一般要求。为了保证RTK测量的精度、速度(初始化时间)和可靠性,除了正确求解坐标转换参数、合理设置基准站和限制作业半径外,在RTK测量中还应注意以下几点:观测卫星的图形强度要高、作业员的责任心要强、观测成果要注意复核、保证测量精度。
随着RTK技术的不断完善,RTK测量的初始化速度、成果精度及可靠性会越来越高。但是由于受卫星信号、接收机状态、测站周围环境及仪器操作的影响,RTK定位有时会出现失真,其成果不可能100%的可靠。因此,在作业中,要根据RTK技术的特点及测区状况,采取有效措施,严格按操作规程作业,并加强成果的复核,以确保RTK成果的精确性和可靠性。
3 结论
本文对RTK实时动态测量技术的发展作了介绍,并且详细介绍了RTK系统的原理、特点以及系统的要点,对RTK技术在当今测绘领域的应用作了一定的分析。
在GPS技术大力发展的今天,RTK技术在测绘工作中的价值将不断体现,其重要性也会不断增加,希望本文的研究能对同行们起到参考作用,共同为我国的测绘事业做出贡献。
参考文献
[1]吴北平.GPS网络RTK定位原理与数学模型研究,中国地质大学博士论文,2003,3.
[2]李征航,何良化,吴北平.全球定位系统(GPS)技术的最新进展(第二讲)网络RTK,绘信息与工程,2002,2.