论文部分内容阅读
针对现有显著性检测算法在复杂场景下细节特征丢失的问题,本文提出了一种多层子网络级联式混合信息流的融合方法。首先使用FCNs骨干网络学习多尺度特征。然后通过多层子网络分层挖掘构建级联式网络框架,充分利用各层次特征的上下文信息,将检测与分割任务联合处理,采用混合信息流方式集成多尺度特性,逐步学习更具有辨别能力的特征信息。最后,嵌入注意力机制将显著性特征作为掩码有效地补偿深层语义信息,进一步区分前景和杂乱的背景。在6个公开数据集上与现有的9种算法进行对比分析,经实验验证,本文算法运行速度可达20.76帧/