论文部分内容阅读
为了提升推荐模型的预测精度,传统方法通常是利用更多的附加信息参与模型的构建.然而,此类方法在提高算法精度的同时也大大增加了算法的时间开销,同时对数据集也存在一定的要求.为了解决上述问题,提出一种基于Bagging集成的矩阵分解模型.该模型根据用户、产品评分数为基学习器动态分配权重,并通过加权求和得到预测评分.在三个不同规模的真实数据集上的实验结果显示:该动态加权Bagging矩阵分解模型拥有与传统矩阵分解模型一样的时间消耗,并且在各个衡量指标上都优于传统的矩阵分解模型。