论文部分内容阅读
Robocup仿真比赛是研究多Agent之间协作和对抗理论的优秀平台,提高Agent的防守能力是一个具有挑战性的问题。为制定合理的防守策略,将Robocup比赛中的一个子任务——半场防守任务分解为多个一对一防守任务,采用了基于Markov对策的强化学习方法解决这种零和交互问题,给出了具体的学习算法。将该算法应用到3D仿真球队——大连理工大学梦之翼(Fantasia)球队,在实际比赛过程中取得了良好效果。验证了采用Markov零和对策的强化学习算法在一对一防守中优于手工代码的结论。