Simulation and Experimental Study on Thermal Conductivity of Nano-Granule Porous Material Based on L

来源 :热科学学报(英文版) | 被引量 : 0次 | 上传用户:mimi107
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Nano-porous materials have excellent thermal insulation performance,whose microstructure and physical properties,however,have great influence on the thermal conductivity.To accurately describe the stochastic phase distribution,a random internal morphology and structure generation-growth method,called the quartet structure generation set (QSGS),has been proposed in the present paper.The model was then imported into lattice Boltzmann algorithm as a fully resolved geometry and used to investigate the effects on heat transfer at the nanoscale.Furthermore,a three-dimensional Lattice Boltzmann method (LBM) D3Q15 was adopted to predict the nano-granule porous material effective thermal conductivity.This ideal method provided a significant advantage over similar porous media methods by directly controlling and adjusting of granule characteristics such as granule size,porosity and pore size distributions and studying their influence directly on thermal conductivity.To verify the accuracy of the proposed model,some experiments based on guarded hot plate meter (GHPM) were conducted.The results indicated that the simulation results agreed well with the experimental data and references values,which illustrated that this method was reliable to generate the microstructure of nano-granule.What's more,the effects of pressure,core distribution probability,cd and density were investigated.There existed an optimal density (about 120 kg?m-3) making the effective thermal conductivity being minimum and an optimal core distribution probability about cd =0.1 making the uniformity being the best.In addition,the present approach is applicable in dealing with other porous materials as well.
其他文献
1988年出生的朱佳敏在2020年入选的启明星里是年龄偏低的,但是他偏快的语速、敏捷的肢体动作、镜片后眼神里流露出的热诚、交谈中缜密的思维和表达以及可以感觉到的谢顶迹象
期刊
根据北京东灵山辽东栎(Quercus wutaishanica)的年轮宽度资料,分析了该地区树木生长在1951—2010年时段对气候要素的响应特征。相关分析表明,夏季干旱胁迫是限制东灵山辽东栎树木生长的最为重要的气候要素,主要体现在与夏季(7—9月)温度的负相关关系和夏季降雨(7月)的正相关关系,另外春季(5月)温度对树木生长也有一定的限制性影响;年表与生长季节干旱指数普遍呈正相关关系,进一步证实