论文部分内容阅读
建筑物的纹理和光谱信息的多样性一直是自动化识别的瓶颈。针对此问题,提出了一种彩色遥感图像建筑物提取方法,该算法结合中性集和均值漂移,对转换到中性集空间的影像进行均值漂移分割,生成以影像中主要地物类型为核心的光谱类别图像,提取建筑物。通过中性集空间的增强及分割,克服了传统均值漂移分割稳定性低、光谱不连续及信息混杂的缺陷,避免了地物识别前提取连通区等操作。实验证明,提出的算法可以简捷、完整、准确、稳定地提取建筑物,满足高分辨率遥感影像建筑物的提取要求。