论文部分内容阅读
本文利用高光谱图像的空间-光谱维信息,结合主动学习算法实现高光谱图像分类。该算法利用较少的训练样本获得较高的分类精度,与此同时,该算法的运算过程复杂度高且计算效率非常低。针对这一特点,本文提出了一种利用图像处理器(Graphic processing units,GPUs)对算法进行数据级并行计算优化。并且利用真实场景的高光谱图像对文中提出的并行计算优化方案进行了实验验证,结果表明该方法在保证与串行分类精度一致的情况下,其计算加速比达到34倍左右,验证了基于GPU的高光谱图像分类算法的有效性。