论文部分内容阅读
从基于自然语言的需求文本中抽取概念模型已有很多相关研究,然而,抽取模型中的关系信息因其复杂性而较少被研究者系统地分析和处理.文中提出了一个通用的关系信息抽取方法,给出抽取规则,从需求文本中确定和抽取关系信息.基于该方法设计并实现了一个系统CREAT3,从中文需求文本自动生成i*框架中的SD(Strategy Dependency,策略依赖)模型,侧重抽取策略依赖关系信息.将得到的模型和专家抽取结果进行对比,结果显示该系统可以获得相当高的准确率,同时也保证了很高的召回率,证明了方法的可用性.并且较相关工作具