梅兰芳与戏剧文化

来源 :东南文化 | 被引量 : 0次 | 上传用户:camelwin2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
梅兰芳成功地进行了一系列京剧艺术的改革,为整个戏剧文化的改革发展提供了榜样,对今天戏剧文化的发展具有重要的提示意义。
其他文献
<正> 鼻烟壶是一种小巧玲珑的工艺品,在清代工艺中,不仅视其为精致工艺中的明珠,同时在国内外享有盛誉。清代鼻烟壶制作之精美、式样之繁多,为雅好者珍贵文玩欣赏之瑰宝。 一
由于决策技术手段的落后和决策专业能力的不足,当前我国的教育决策机制面临着诸多困境与挑战,教育大数据的蓬勃发展为教育决策机制的优化提供了机遇。教育大数据能够指导教育
<正> 80年代后期,苏联教育界展开了一场关于教育思想的大论争。通过论争,一个新的教育流派——合作教育学迅速崛起。1986年10月,苏联《教师报》邀请著名的教育革新家举行会晤
"机动野战牙科治疗装备作为各国军队平战时口腔医疗的重要力量,已经得到了广泛的重视。我军也逐步意识到加强机动野战牙科治疗装备的重要性,并开始探索相关装备的研制。机动
本文通过阐述当下纤维艺术的新形式,深入分析纤维艺术的材料语言的发展趋势;并以一种全新的视角,挖掘纤维艺术中材料与主题深刻联系、与互动的影响,试图证明纤维艺术材料语言
服务外包产业是现代高端服务业的重要组成部分,具有信息技术承载度高、附加值大、资源消耗低、环境污染少、吸纳就业(特别是大学生就业)能力强、国际化水平高等特点。当前,以服务
在渠系建筑物中,跌水建筑物最为常用,但在设计及实际运用中还存在着不少问题。其中最为普遍的是下游冲刷问题,特别是消力池以下渠道两堤岸边冲刷较为突出,成为渠道运行管理中
随着国家战略的支持和智能网联汽车概念的提出,无人驾驶汽车的研发工作步入了快车道。本文结合无人驾驶汽车的发展历程和技术路线,分析目前的应用困境和发展道路上存在的问题
<正> 求二次函数的极值,学生通常是利用二次函数的顶点坐标公式。这种基本方法应该牢固掌握。为了开阔学生的视野,沟通知识之间的联系,在适当的时候还可以介绍求函数极值的判