论文部分内容阅读
支持向量机作为一种重要的机器学习工具,近年来受到了广泛的关注,并得以迅速发展.但在处理大数据时,求解支持向量机对应的二次规划问题是非常棘手的,计算时间长,存储空间大.如何有效求解支持向量机是一个不可回避的研究课题.本文主要研究了如何利用牛顿法求解支持向量机和双生支持向量机,并提出了两个新算法.实验结果表明,所提算法是有效和高效的.