论文部分内容阅读
针对传统数据处理纽合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型。计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的。