论文部分内容阅读
结合河北唐山地区土样样本,以地下水位埋深(hw)、地下水头(h)、标准贯入锤击数(N63.5)、土的动强度(R)及地震力(L)为评价指标建立了BP神经网络和RBF神经网络的预测模型。通过实例结果比较分析,表明RBF神经网络和BP神经网络判断砂土液化的精度都较高,但对于用埋深hs,地下水位深度h,标准贯入锤击数N63.5,土的动强度R和地震力L作为参数指标时,RBF神经网络在砂土液化的判别方面优于BP神经网络。通过对金坛石桥枢纽进行建模预测,进一步证明了以上结论,并说明了BP神经网络和RBF神经网络对于砂土