论文部分内容阅读
目的总结2004年来数学模型在国内外布鲁氏菌病研究中的应用现状,为该主题相关领域的研究工作提供参考。方法收集2004年以来中国知识基础设施工程和Pub Med数据库所收录的基于数学模型的布鲁氏菌病防控相关学术论文,分析所应用的数学模型和研究内容。结果共纳入合格文献8篇,其中英文文献2篇、中文文献6篇。纳入的文献主要集中发表于2011-2015年之间,所涉及的模型包括灰色模型、ARIMA模型、贝叶斯时空模型和动力学模型。所收集的数据囊括了内蒙古、辽宁、浙江、云南等9省疫情监测资料以及印度部分监测资料。结论在数学模型支撑下的人布鲁氏菌病防控工作已经取得了一定的进步,应该在更大范围的实际应用中验证其有效性,为应用数学理论的传染病研究带来更多的可能。
OBJECTIVE: To summarize the application status of mathematical models in brucellosis research at home and abroad in 2004, and provide reference for the research work in related fields of this topic. Methods The academic papers on prevention and control of Brucellosis collected from China Knowledge Infrastructure Project and Pub Med database collected since 2004 were collected, and the mathematical models and research contents were analyzed. Results A total of 8 qualified documents were included, of which 2 were English and 6 were Chinese. The included literature was mainly published in 2011-2015. The involved models include gray model, ARIMA model, Bayesian spatio-temporal model and dynamic model. The data collected include epidemic monitoring data in 9 provinces of Inner Mongolia, Liaoning, Zhejiang and Yunnan, as well as some monitoring data in India. Conclusion The prevention and control of human brucellosis supported by the mathematical model has made some progress, and its validity should be verified in a wider range of practical applications, bringing more to the study of infectious diseases applying mathematical theory may.