论文部分内容阅读
蛋白质亚细胞的定位预测不仅是研究蛋白质结构和功能的重要基础,还对了解某些疾病的发病机理、药物设计与发现具有重要意义。然而,如何利用机器学习精准预测蛋白质亚细胞的位置一直是一项具有挑战性的科学难题。针对这一问题,提出了一种基于聚类与特征融合的蛋白质亚细胞定位方法。首先将自相关系数法和熵密度法引入蛋白质特征表达模型的构建,并在传统的PseAAC(Pseudo-amino Acid Composition)的基础上提出了一种改进型PseAAC方法。为了更好地表达蛋白质序列信息,文中首先将自相关系数法、熵密度法和