论文部分内容阅读
传统相变材料受限于自身热导率小,其相变蓄热效率难以提升,通过在相变材料中添加具有高热导率的金属多孔结构是强化传热的重要手段之一。本文建立了三周期极小曲面(triply periodic minimal surface,TPMS)多孔铝-石蜡复合相变材料的三维、瞬态包含自然对流的相变蓄热模型,利用数值仿真结合实验的方法研究了TPMS多孔铝-石蜡复合相变材料在蓄热过程中的固液相界面演变规律、实时温度变化、热传输特性以及蓄热性能。结果表明,在纯石蜡中添加primitive杆状(primitive sheet,PS)、primitive壳状(primitive network,PN)两种TPMS多孔铝结构后,石蜡相变温度范围内出现明显的相变温度平台,PS-石蜡、PN-石蜡复合相变材料的相变起始时间较纯石蜡分别减少了74.1%与91.4%,竖直方向上的最大温度梯度由纯石蜡的1605.7℃/m分别下降至PS-石蜡、PN-石蜡复合相变材料的840℃/m、943.8℃/m,蓄热速率较纯石蜡分别提高3.10倍、4.69倍。最后,通过选区激光熔化(selective laser melting,SLM)技术成型了PS、PN多孔铝结构,并采用浇筑法制备了TPMS多孔铝-石蜡复合相变材料样品,利用可视化实验平台对仿真结果进行实验验证,发现仿真结果同实验吻合较好。