论文部分内容阅读
By means of dynamic plastic deformation (DPD) followed by thermal annealing, a mixed structure of micro-sized austenite grains embedded with nano-scale twin bundles (of about 20% in volume) has been synthesized in a 316L stainless steel (SS). Such a 316L SS sample exhibits a tensile strength as high as 1001 MPa and an elongation-to-failure of about 23%. The much elevated strength originates from the presence of a considerable number of strengthening nano-twin bundles, while the ductility from the recrystallized grains. The superior strength-ductility combination achieved in the nano-twins-strengthened austenite steel demonstrates a novel approach for optimizing the mechanical properties in engineering materials.
By means of dynamic plastic deformation (DPD) followed by thermal annealing, a mixed structure of micro-sized austenite grains embedded with nano-scale twin bundles (of about 20% in volume) has been synthesized in a 316L stainless steel (SS). Such a 316L SS sample exhibits a tensile strength as high as 1001 MPa and an elongation-to-failure of about 23%. The much elevated strength originates from the presence of a considerable number of strengthening nano-twin bundles, while the ductility from the The superior strength-ductility combination achieved in the nano-twins-strengthened austenite steel demonstrates a novel approach for optimizing the mechanical properties in engineering materials.