论文部分内容阅读
针对传统的特征选择方法在非平衡数据集中分类效果不理想的问题,提出了一种适合非平衡数据分类的改进特征选择方法.该方法将集中度和分散度相结合,同时考虑到在文本长短不一时词频对文本分类的作用,得到一种新的词频归一化方法,实现了对传统特征提取方法的改进.另一方面,将三支决策思想引入到朴素贝叶斯算法,得到了NB-三支决策分类算法,并将该算法应用到非平衡数据集的分类.通过两组实验对比结果表明:改进特征选择方法较CHI和IG方法,处理非平衡度高的数据集分类效果较好;选取相同的特征选择方法和数据集,NB-三支分类器比NB