论文部分内容阅读
传统的网络恶意攻击取证方法对恶意攻击行为的检查不全面、恶意攻击行为相似度分辨准确性低。为此,提出了一种分布式异构网络恶意攻击取证及预警方法。利用CVSS计算器对网络恶意攻击行为的严重等级进行评估,结合灰关联分析法建立灰关联模型,对评估要素进行量化处理;在此基础上,获取并处理日志、事件、警告和证据信息,建立证据库。根据取证结果,结合TOP-K预警策略实现分布式异构网络恶意攻击的预警和预警信息储存。实验结果表明,所提方法对恶意攻击行为的查全率和恶意攻击行为相似度分辨的准确性较高,且预警反应耗时较短,不仅能够准