论文部分内容阅读
目的:研究数据集中图像的皮肤背景颜色对黑色素瘤检测过程中深度学习算法性能的影响。方法:从海量带标签的皮肤镜图像中区分白色皮肤图像和黄色皮肤图像2类数据集,并将2类数据集分别按一定比例划分为训练集、验证集和测试集。将白色皮肤图像和黄色皮肤图像2类数据集在ResNet-152网络和相同的超参数下进行训练、验证和测试,测试结果通过敏感度、特异度、准确度、平均精度和ROC的AUC等5项指标进行评估。最后在白色皮肤数据训练得到的模型上对黄色皮肤图像的测试集进行检测,并与测试集和训练集均来自黄色皮肤图像的结果进行对比