【摘 要】
:
为寻求最合适的硅锰合金冷却方案,提出硅锰合金冷却方案仿真探究,以硅锰合金连铸粒化成型设备为研究对象,利用空冷,风冷,以及风冷加模具底部水冷几种冷却方案进行了仿真分析,分析目标集中在两点,一是铸件温度仿真,二是模具应力仿真,通过观察铸件冷却速度,以及凝固情况进行铸件温度仿真;利用观察模具是否会产生故障实现模具应力仿真,综合以上两项的仿真结果,选出理论上最适合的冷却方案,实验结果证明,风冷+模具底部喷水水冷的冷却方案最适合于硅锰合金连铸粒化成型设备.
【机 构】
:
宁夏大学机械工程学院,宁夏 银川750021;华中科技大学机械科学与工程学院,湖北 武汉430074
论文部分内容阅读
为寻求最合适的硅锰合金冷却方案,提出硅锰合金冷却方案仿真探究,以硅锰合金连铸粒化成型设备为研究对象,利用空冷,风冷,以及风冷加模具底部水冷几种冷却方案进行了仿真分析,分析目标集中在两点,一是铸件温度仿真,二是模具应力仿真,通过观察铸件冷却速度,以及凝固情况进行铸件温度仿真;利用观察模具是否会产生故障实现模具应力仿真,综合以上两项的仿真结果,选出理论上最适合的冷却方案,实验结果证明,风冷+模具底部喷水水冷的冷却方案最适合于硅锰合金连铸粒化成型设备.
其他文献
为优化图像配准后轮廓模糊、总体分布形状不完整等问题,提出一种多维度视觉传达下投影变换图像配准仿真.为保留配准后图像能够完整保留不同分辨率下的特征,采用LOG(Laplacian of Gaussian)算子提取图像轮廓.将每个轮廓形状的描述子视为形状的特征向量,通过傅里叶特征匹配算法匹配提取出的不同图像轮廓,获得轮廓对应点对,将其作为投影变换的映射点,得到配准后图像.仿真中,对比分析所提方法和传统方法的配准效果,结果表明所提方法没有明显的误配准,且图像间的连接平滑自然,具有一定的可行性和有效性.
针对当前超分辨率图像噪声识别方法,未考虑获取多方向阈值分割图像,导致超分辨率图像噪声识别时间长、识别精度和识别覆盖率低的问题,提出基于多方向阈值的超分辨率图像噪声识别方法.依据一维函数灰度曲线获取局部阈值,利用灰度波动局部阈值分割法,分割局部阈值图像,分析图像中噪声曲面的曲率变化率、弹性变化率、边界法矢、曲面离散率、外载荷修正量等特征值,将分析出的特征性质整合成一组特征向量,通过分类器进行计算,实现超分辨率图像噪声识别.实验结果表明,所提方法的超分辨率图像噪声识别精度较高,能够有效缩短超分辨率图像噪声识别
随着科技的迅速发展,智能手机安全性的问题越来越受人们关注,用户识别认证在保证智能手机安全方面扮演着重要的角色.提出了一种基于微机电系统(Microelectro Mechanical Systems,MEMS)传感器步态信号持续同调的用户识别的新方法,MEMS传感器信号中的混沌不变量(伪周期性)可以由相空间中的拓扑特征来表示,通过持续同调提取相空间拓扑特征,建立不同用户的持续同调模型.利用持续同调特点,进一步简化持续同调为概率密度,并使用K-L散度度量不同用户模型间的差异,最终利用MEMS传感器信号实现无
在人机交互领域中,基于视觉的手势特征提取成为研究的热点,但手势存在较大范围的变化,很难实现对手势的有效分类.研究了一种基于LLE改进算法的手势特征提取方法.先将手势特征数据中的某个数据点与邻近数据点组成局部线性关系,对重构误差进行拉格朗日乘子算法优化处理,求出新的局部重建权值矩阵,为了使局部线性关系能够满足低维度空间,通过求解映射矩阵的方法,将手势特征样本数据的目标特征空间映射到低维度空间中.采用稀疏观察手势描述法对手势特征进行提取,根据手势参数对手势轨迹数据进行归一化处理,为了提高手势特征提取的实时性,
针对传统直方图均衡化(HE)算法在处理低质量图像时出现的细节信息丢失、部分灰阶合并的不足,提出一种彩色图像在HSV空间的加权HE图像增强算法.通过增加权重参数实现自适应调节图像像素信息的目的,算法构造了一种新的自适应映射函数.图像灰度级经过两次不同的映射有效地克服灰阶合并和细节丢失现象.对于输入图像进行颜色幅度拉伸和饱和度信息拉伸至最大化,完成对图像颜色信息的恢复.仿真结果证明,算法弥补了其它算法处理结果中出现的对比度低下和颜色信息丢失等不足,算法有效地改善了图像的质量.
针对传统多视点视频图像列阵自编码方法编码效率低、响应时间长的问题,提出基于串匹配的多视点视频图像阵列自编码方法.首先根据串匹配算法,组建视点之间相互对应的对极线校正索引表.将其应用于视觉估计中来缩小两视点之间的视差搜索范围,然后将原有的视差搜索二维降到一维,利用拟合三维二次函数确定不同关键点的具体坐标位置以及尺度,同时删除无用的响应点,在得到匹配点后,通过描述子来准确描述特征点,匹配不同的描述子信息,获取符合标准的匹配点集,以达到多视点视频图像阵列自编码的目的.仿真结果表明,所提方法能够有效提升编码效率,
为了快速理解图像信息,提高可视化识别分类效果,提出视差估计下VR图像几何特征数字化提取.将图像几何特征分为面积、周长、质心与延伸方向等类型,利用视差估计法获取图像相邻块间相似尺度,设定阈值,选取最佳参考视点;根据参考视点,引入高斯卷积核确定空间内核,构建尺度空间,保留图像边缘信息;定义候选点,初步划分关键点区间,针对候选点空间函数值,通过阈值比较,过滤出对比度较低的点,建立关键点集合;利用离散Gabor小波变换方法,得出Gabor变换系统数均值和方差,组成几何特征向量;结合最大能量值实现所有特征空间的向量