论文部分内容阅读
针对当前信息检索服务中存在的固有缺陷,提出了一种基于用户桌面信息抽取的个性化推荐方法.详细介绍了通过用户桌面资源信息抽取建立长期用户模型,以及通过工作场景信息抽取建立短期用户模型的算法.长期用户模型提供了完整全面的用户兴趣偏好信息,短期用户模型则为预测用户当前信息需求提供了依据.实验结果表明,基于用户桌面信息抽取的个陛化推荐服务能较好地预测用户当前需求、具有良好的推荐效果.