论文部分内容阅读
传统统计局部核主元分析(statistical local kernel principal component analysis, SLKPCA)在构造改进残差时未考虑样本的差异性,使得故障样本信息易于被其他样本所掩盖,针对该问题,提出一种基于加权统计局部核主元分析(weighted statistical local kernel principal component analysis, WSLKPCA)的非线性化工过程微小故障诊断方法。该方法首先利用KPCA获取过程的得分向量和特征值并构建初始残差