论文部分内容阅读
提出一种蚁群优化聚类算法,用于将N个对象优化分成K个不同的划分;该算法采用全局信息素更新策略和启发式信息构造聚类解,通过提高信息素在求解过程中的利用率加快了聚类速度,通过使用启发式信息提高了算法的搜索效率,使用均匀交叉算子改善了聚类解的质量;在几个模拟的数据集和UCI机器学习数据集上测试该算法的性能,并与其它几个启发式算法进行比较;计算结果表明该算法具有更好的解的质量,更少的函数估计次数和更少的运行时间。