论文部分内容阅读
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave–concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 m J with an FWHM pulse width of 7 ns at100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd: YAG laser. We experimentally study and compare the performance of the pulsed Nd: YAG laser in the free-running and Q-switched modes at different pulse repetition Rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 m J with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q -switched regime is 17.5%.