基于IIGA-BP神经网络的钢材销售预测模型

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:xqd2cd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为克服传统BP神经网络(BP Neural Network,BPNN)在销售预测中,预测精度低、收敛速度慢的缺点.提出了一种基于改进免疫遗传算法(Improved Immune Genetic Algorithm,IIGA)优化BP神经网络的销售预测模型.改进的免疫遗传算法提出了新的种群初始化方式、抗体浓度的调节机制及自适应交叉算子、变异算子的设计方法,有效的提高了IIGA的收敛能力和寻优能力.并用IIGA优化BPNN的初始权值和阈值,改善网络参数的随机性导致BPNN输出不稳定和易陷入局部极值的缺点.以某钢铁企业的历史销售数据为例进行实证研究,利用Matlab分别构建BP、IGA-BP和IIGA-BP神经网络预测模型进行仿真对比分析.实验证明,IIGA-BP神经网络预测模型较BP神经网络预测模型预测精度提高了23.82%,较IGA-BP神经网络预测模型预测精度提高了22.02%.IIGA-BP神经网络模型对钢材销售预测的泛化性能更好,预测效果更稳定误差基本保持在[0.25,0.25]之间,预测精度大幅度提高,为企业销售预测提供了一种较为有效的方法.
其他文献
为了解决目前多目标跟踪算法在行人遮挡后无法再次准确跟踪的问题,提出了一种融入注意力机制和改进卡尔曼滤波的多目标跟踪算法,选用联合检测和重识别框架提取特征,同时完成目标检测和重识别任务.设计了并行支路注意力机制,包括空间注意力和通道注意力两个部分,每个部分都采用并行支路的方式完成池化和卷积操作.在跟踪阶段,本文提出了速度先验卡尔曼滤波,实现对行人运动状态更精确的预测.采用CUHK-SYSU数据集对算法进行训练,并在MOT16数据集上做算法的验证和测试.本算法的多目标跟踪准确度(MOTA)达到了65.1%,多
新疆具有典型的干旱气候特征,疆内各地区经济基础薄弱、水利建设智能化程度不高,农业灌溉水资源利用率只有40%左右.吉木乃县作为新疆最为典型的干旱缺水县,近年来因全球气候变暖形势加剧,其境内唯一的水源地—木斯岛冰山的冰川雪线不断后退,情况不容乐观.传统水资源分配与管理方式较为落后,已不能解决当前吉木乃县所面临的水利管理困境,其管理效率低,产生的效益差,已不符合当前的经济发展形势.而现代化的智慧水利利用信息技术、网络技术、大数据和人工智能,使得水利管理智能化、管理效率大大提高.本文以新疆维吾尔自治区阿勒泰地区吉
在大规模网络环境下,主机面临的安全威胁也愈发多样.随着基于机器学习检测恶意文件的技术快速崛起,极大的提升了对恶意软件的检测能力,也迫使对手改变了攻击策略.其中“Living off the land”策略通过调用操作系统工具或者执行任务的自动化管理程序来实现恶意行为.威胁检测可以从父子进程的上下文中发现可疑行为,将父子进程链及其派生的相关事件看作无向图,应用监督学习XGBoost算法进行权重分配,生成无向加权图.最后使用社区发现算法从图中识别出更大的攻击序列,在MIRTE ATT&CK仿真攻击数据集上进行
API相关的知识通常分散隐含在多个信息源,如API参考文档、问答网站等非结构化的文本中,不利于API的查询与检索.为此,提出一种多源信息融合的API知识图谱构建方法,以提高API检索的效率.API参考文档从设计者角度描述了API的功能和结构,Stack Overflow问答网站从用户角度提供了API的使用目的及应用场景,二者互为补充,可共同为API查询与检索提供支持.通过分析API参考文档,抽取API和领域概念作为实体,构建API和领域概念之间的关联关系;利用Stack Overflow问答网站,抽取问答