论文部分内容阅读
视频对象自动分类是智能视频监控的重要技术基础之一.为了提高分类精度,必须选择合适的对象特征.目前常用的视频对象分类方法都缺乏对于分类特征重要性的评价机制.提出一种视频对象分类特征评价与选择方法,该方法基于Adaboost算法的思想,通过对特征贡献进行定量评价实现特征选择.实验将视频对象区分为"单个行人"、"人群"、"车辆"和"骑车的人"四种类别,证明了该方法的合理性和有效性.