if($navinfor['smalltext']=="") {
echo '';
}
else{
echo '
【摘 要】
:
'.$navinfor[smalltext].'
';
}
?>
$str = '';
$pd_record = explode(',', trim($navinfor['writer']));
$pd_record = array_filter($pd_record);
if(!empty($pd_record)){
$str .= '
【作 者】
:
';
foreach($pd_record as $writer){
$str .= '
'.$writer. ' ';
}
$str = trim($str,',').'
';
}
echo $str;
?>
if($navinfor['author_org']=="") {
echo '';
}
else{
echo '
【机 构】
:
'.$navinfor[author_org].'
';
}
?>
if($navinfor['befrom']=="") {
echo '';
}
else{
echo '
【出 处】
:
'.$navinfor[befrom].'
';
}
?>
if($navinfor['year']=="") {
echo '';
}
else{
echo '
【发表日期】
:
'.$navinfor[year].'年'.$navinfor[issue_num].'期
';
}
?>
$str = '';
$pd_record = explode(',', trim($navinfor['keyboard']));
$pd_record = array_filter($pd_record);
if(!empty($pd_record)){
$str .= '
【关键词】
:
';
foreach($pd_record as $keyboard){
$str .= '
'.$keyboard. ' ';
}
$str = trim($str,',').'
';
}
echo $str;
?>
if($navinfor['fund_info']=="") {
echo '';
}
else{
echo '
【基金项目】
:
'.$navinfor[fund_info].'
';
}
?>
论文部分内容阅读
采用BP神经网络,把矩形压电振子的各阶振型位移输入到神经网络中进行训练,提取各阶模态的振型特征,可实现矩形压电振子的共振振幅分布和振动模态阶次的非线性映射,以此区分各个模态。仿真实验结果显示,建立的神经网络模型可以从ANSYS输出的各模态中准确识别出矩形压电振子的B(3,1)模态,对训练样本外的尺寸也有一定的识别效果,表明所建立的BP神经网络可以有效地用于该矩形压电振子的振动模态区分。