论文部分内容阅读
通过传统图像处理方法将航拍图片旋转后进行前景分割、计算轮廓和生成标识框的方法增加训练样本中不同拍摄视角下样本的数量,使得训练样本具有更全的代表性。算法方面针对小目标检测,通过在原有YOLO目标检测算法的基础上加入图像超分辨率功能形成SR-YOLO网络模型,并对原网络模型中的归一化层和残差层层数进行调整。应用SR-YOLO网络模型使用经过旋转扩充后的数据集进行训练,得到"人"的目标检测模型。通过实验数据分析,此模型在航拍场景下目标的识别率较原网络结构有所提升。