论文部分内容阅读
【摘 要】在多沙河流上,无论是高坝大库的高水头电站,还是低水头河床式枢纽,电站进水口的取水排沙历来是水电工作者十分关注的问题。笔者在对电站进水口排沙底孔的模型试验研究中认识到,要提高排沙底孔的输沙率,必须“束水攻沙”。本文介绍了2个电站进水口排沙底孔的泥沙模型试验情况,提出了一种新的“格栅式排沙廊道+排沙底孔”的组合型式(简称格栅式排沙底孔),取得了理想的排沙效果,实现了电站进水口的“门前清”,较好地解决了工程实际问题。格栅式排沙底孔对其他同类型工程具有一定的借鉴作用。
【关键词】 电站进水口;格栅式排沙廊道;排沙底孔
Shallow talk a water electricity station into water row the sand bottom choose of bore type design
Liu Xiao-jian
(Xinjiang Yili water conservancy electric power survey design researchinstitute Yining Xinjiang 835000)
【Abstract】At many sand river up, regardless is Gao Shui3 Tou2 of Gao Ba4 Da4's database electricity station, be still low water head river bed type vital point, electricity station enter water of take water row sand to in times gone by be water electricity worker very concern of problem.The writer is in the rightness the electricity the station enter water the row the sand bottom the model of the bore experiment the research understanding arrive, exaltation row the sand bottom lose of bore sand rate, have to“bunch water offend a sand”.This text introduction 2 electricity station enter water row sand bottom the sediment model of the bore experiment circumstance, put forward a kind of new of“space grid type row sand gallery+ row sand bottom bore” of combination pattern(brief name space grid type row sand bottom bore), obtain ideal of row sand effect, realization electricity station enter water of“pure before the door”, more and so solved engineering actual problem.The space grid type row sand bottom bore as to it's he the same kind type engineering have certain of draw lessons from a function.
【Key words】Electricity station enter water;The space grid type row sand gallery;The row sand bottom bore
1. 概述
在多沙河流上,无论是高坝大库的高水头电站,还是低水头河床式枢纽,电站进水口的取水排沙历来是水电工作者十分关注的问题。众所周知,泥沙磨损对水轮机造成的破坏作用是非常严重的。为了减少粗沙(推移质、跃移质)过机,工程实践中已经积累了丰富的经验,不同类型的工程措施被成功地利用。主要措施有:(1)利用泥沙垂线分布上细下粗的特点,引取表层水流,底层含沙水流通过排沙底孔或利用导沙坎引向冲刷闸排出库外;(2)利用弯道环流的水流特点,正面引水,侧面排沙;(3)利用排沙廊道、截沙槽或沉沙池,通过人为制造的螺旋流排泄泥沙。
对于高水头枢纽,设置排沙底孔或泄洪排沙洞是减少粗沙过机的有效措施。排沙底孔一般布置在电站进水口的下部,利用泄洪在电站进水口前形成冲刷漏斗。冲刷漏斗越大,越有利于拦截粗沙,减少粗沙过机。对于低水头河床式枢纽,排沙底孔布置在电站进水口下部比较困难,布置在电站进水口两侧,冲刷漏斗范围较小,难以达到理想的排沙效果;因此一般多修建排沙廊道,利用廊道内的螺旋流排泄泥沙。
我们在对电站进水口的排沙问题进行泥沙模型试验研究中认识到,要提高排沙底孔的输沙率,必须“束水攻沙”,由此提出了“格栅式排沙廊道+排沙底孔”的组合型式(简称格栅式排沙底孔),即在电站进水口前沿设置一道格栅式排沙廊道,排沙底孔与格栅式排沙廊道连通。当排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方。由于排沙廊道顶部格栅的作用,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空。为了验证格栅式排沙底孔的适应性,我们将这一型式应用于另一水电站工程,同样收到良好的排沙效果。
2. 泥沙模型试验成果介绍
2.1 A工程模型试验成果。
A水电工程是以单一发电为开发目标的引水式电站。工程所在河段属多沙河流,坝址多年平均悬移质输沙量63.70万t,推移质输沙量19.10万t,推移质重度γs'=2.78t/m3,淤积干容重γs'=1.60 t/m3,中值粒径d50=33.3mm,平均粒径dpj=52.9mm。
工程为混凝土重力闸坝(设有泄洪孔、排沙底孔、排污道),坝顶高程2471.40m,最大坝高34.4m。泄洪孔和排沙底孔尺寸为5.0m×3.50m(宽×高),进口底板高程均为2442.00m。电站进水口布置于坝前河道右侧岸边,发电引水流量28.2m3/s,进口底板高程2449.50m。在电站进水口前、排沙底孔进口上游设置一道与底孔等宽的冲沙槽,长度35m。设置冲沙槽的主要目的是拦截泥沙,尤其是推移质泥沙,当泥沙横向翻越导墙时淤积在冲沙槽内,使电站进水口与排沙底孔拉沙水流间形成一个隔断,起到截沙槽的作用。原方案试验成果表明,在“冲沙槽+排沙底孔”的组合方案条件下,当排沙底孔泄洪排沙时,电站进水口区域的水流流速小,排沙能力弱,试验观测到冲刷漏斗发生坝0+00.0m~坝0-10.0m范围以内,进水口前沿的泥沙不能排出库外,不能达到“门前清”的冲刷效果。
通过对多个方案的对比试验,最终选定了“格栅式排沙廊道+排沙底孔”的组合方案。该方案最突出的优点是:由于合理地调整了格栅宽度、格栅间距、排沙廊道底坡等参数,使排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方。在排沙廊道顶部格栅的作用下,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空,从而在电站进水口前沿、格栅式排沙廊道区域内形成一长条状的冲刷漏斗。泥沙排空后的区域形成一个隔断,起到了截沙槽的作用。
试验成果表明,在库水位2457m,排沙底孔下泄流量150m3/s时,排沙廊道周边的泥沙能在20分钟内排空(模型约4分钟),冲刷漏斗的长度方向在坝0+00.0m~坝0-35.0m之间。与原“冲沙槽+排沙底孔”方案相比,“格栅式排沙廊道+排沙底孔”方案的水流挟沙能力更强、冲刷漏斗的范围更大,达到了电站进水口“门前清”的理想效果。
2.2 B工程模型试验成果。
B水电工程是以发电为主要的水电工程。坝址河段多年平均悬移质输沙量1209万t,推移质输沙量190万t,坝址悬移质平均含沙量2.97Kg/m3。床沙干容重γs=2.56t/m3;Cs1断面、Cs2断面中值粒径d50分别为19.0mm、14.0mm,平均粒径dpj分别为19.7mm、16.7mm。
电站首部枢纽由泄洪表孔、排沙底孔、冲沙槽、非溢流坝段及进水口等建筑物组成。大坝坝轴线位于峡谷出口处。河床布置3孔泄洪表孔,孔口尺寸(宽×高)为8.0m×13.0m,堰顶高程1269.0m;河床左侧主河槽布置1孔排沙底孔,孔口尺寸(宽×高)为6.0m×10.0m,底板高程1257.00m,承担泄洪与溯源拉沙任务。
在A工程模型试验成果的基础上,我们在B工程上采用格栅式排沙底孔方案,通过模型试验调整格栅的尺寸及格栅间距、排沙廊道底坡、排沙廊道长度等参数。冲刷试验成果表明:控制上游库区水位1276 m,在冲沙流量100m3/s、250 m3/s和600 m3/s时,开启格栅式排沙底孔,运行32分钟(模型约4分钟),在电站进水口前沿、排沙廊道内及周边区域的泥沙均能排空,冲刷漏斗范围在坝0+00.0m~坝0-30.0m之间,同样达到了电站进水口“门前清”的理想效果。
3. 格栅式排沙底孔体型
格栅式排沙底孔可分为两个部分:
(1)常规类型的排沙底孔;
(2)带有格栅顶板的排沙廊道。根据电站进水口与枢纽布置的不同,排沙廊道的轴线与排沙底孔的轴线可以成0°~90°夹角。排沙廊道的靠进水口一侧的边墙应高于另一侧边墙,同时也应高于电站进水口底板,边墙高度可根据工程具体情况确定,边墙顶部也可以设计成“Γ”型,以利于拦截泥沙。
4. 格栅式排沙底孔泄流能力
受格栅式排沙廊道的影响,格栅式排沙底孔的泄流能力小于常规类型的排沙底孔。由于排沙廊道内水力条件复杂,流态紊乱,目前无法计算格栅式排沙底孔的泄流能力,只能通过模型试验测试。
以A工程为例:A工程的格栅式排沙廊道的尺寸为:b=5m,d=2m,e=1m,i=0.1667,L=35m。排沙底孔的体型为:平底,进口顶曲线为椭圆曲线,长半轴4.5m,短半轴1.5m,出口断面为5m×3.5m(宽×高)。
通过泄流能力试验,得到格栅式排沙底孔自由出流时的流量计算式为:
Q=61.7099H0.4951,式中:H=排沙底孔底板以上总水头-闸门开高。
流量系数计算式为:μ=0.7961/H0.0049。
因此,A工程在正常运行条件下,格栅式排沙底孔的流量系数取值为μ=0.783~0.790。
5. 结语
电站进水口的取水排沙历来是水电工作者十分关注的问题。为了保证电站进水口不产生推移质淤沙,减少粗沙过机,本文进行了有益的探索。本文在2个电站进水口排沙底孔泥沙模型试验的基础上,提出了一种 “格栅式排沙廊道+排沙底孔”的组合型式(简称格栅式排沙底孔)。即:在电站进水口前沿设置一道格栅式排沙廊道,排沙底孔与格栅式排沙廊道连通。当排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方,在排沙廊道顶部格栅的作用下,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空。在电站进水口前沿、格栅式排沙廊道区域内形成一长条状的冲刷漏斗。泥沙排空后的区域形成一个隔断,起到了截沙槽的作用,达到电站进水口“门前清”的效果,较好地解决了工程实际问题。格栅式排沙底孔对其他同类型工程具有一定的借鉴作用,也值得今后对其体型进行深入的研究。
[文章编号]1619-2737(2010)02-19-05
【关键词】 电站进水口;格栅式排沙廊道;排沙底孔
Shallow talk a water electricity station into water row the sand bottom choose of bore type design
Liu Xiao-jian
(Xinjiang Yili water conservancy electric power survey design researchinstitute Yining Xinjiang 835000)
【Abstract】At many sand river up, regardless is Gao Shui3 Tou2 of Gao Ba4 Da4's database electricity station, be still low water head river bed type vital point, electricity station enter water of take water row sand to in times gone by be water electricity worker very concern of problem.The writer is in the rightness the electricity the station enter water the row the sand bottom the model of the bore experiment the research understanding arrive, exaltation row the sand bottom lose of bore sand rate, have to“bunch water offend a sand”.This text introduction 2 electricity station enter water row sand bottom the sediment model of the bore experiment circumstance, put forward a kind of new of“space grid type row sand gallery+ row sand bottom bore” of combination pattern(brief name space grid type row sand bottom bore), obtain ideal of row sand effect, realization electricity station enter water of“pure before the door”, more and so solved engineering actual problem.The space grid type row sand bottom bore as to it's he the same kind type engineering have certain of draw lessons from a function.
【Key words】Electricity station enter water;The space grid type row sand gallery;The row sand bottom bore
1. 概述
在多沙河流上,无论是高坝大库的高水头电站,还是低水头河床式枢纽,电站进水口的取水排沙历来是水电工作者十分关注的问题。众所周知,泥沙磨损对水轮机造成的破坏作用是非常严重的。为了减少粗沙(推移质、跃移质)过机,工程实践中已经积累了丰富的经验,不同类型的工程措施被成功地利用。主要措施有:(1)利用泥沙垂线分布上细下粗的特点,引取表层水流,底层含沙水流通过排沙底孔或利用导沙坎引向冲刷闸排出库外;(2)利用弯道环流的水流特点,正面引水,侧面排沙;(3)利用排沙廊道、截沙槽或沉沙池,通过人为制造的螺旋流排泄泥沙。
对于高水头枢纽,设置排沙底孔或泄洪排沙洞是减少粗沙过机的有效措施。排沙底孔一般布置在电站进水口的下部,利用泄洪在电站进水口前形成冲刷漏斗。冲刷漏斗越大,越有利于拦截粗沙,减少粗沙过机。对于低水头河床式枢纽,排沙底孔布置在电站进水口下部比较困难,布置在电站进水口两侧,冲刷漏斗范围较小,难以达到理想的排沙效果;因此一般多修建排沙廊道,利用廊道内的螺旋流排泄泥沙。
我们在对电站进水口的排沙问题进行泥沙模型试验研究中认识到,要提高排沙底孔的输沙率,必须“束水攻沙”,由此提出了“格栅式排沙廊道+排沙底孔”的组合型式(简称格栅式排沙底孔),即在电站进水口前沿设置一道格栅式排沙廊道,排沙底孔与格栅式排沙廊道连通。当排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方。由于排沙廊道顶部格栅的作用,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空。为了验证格栅式排沙底孔的适应性,我们将这一型式应用于另一水电站工程,同样收到良好的排沙效果。
2. 泥沙模型试验成果介绍
2.1 A工程模型试验成果。
A水电工程是以单一发电为开发目标的引水式电站。工程所在河段属多沙河流,坝址多年平均悬移质输沙量63.70万t,推移质输沙量19.10万t,推移质重度γs'=2.78t/m3,淤积干容重γs'=1.60 t/m3,中值粒径d50=33.3mm,平均粒径dpj=52.9mm。
工程为混凝土重力闸坝(设有泄洪孔、排沙底孔、排污道),坝顶高程2471.40m,最大坝高34.4m。泄洪孔和排沙底孔尺寸为5.0m×3.50m(宽×高),进口底板高程均为2442.00m。电站进水口布置于坝前河道右侧岸边,发电引水流量28.2m3/s,进口底板高程2449.50m。在电站进水口前、排沙底孔进口上游设置一道与底孔等宽的冲沙槽,长度35m。设置冲沙槽的主要目的是拦截泥沙,尤其是推移质泥沙,当泥沙横向翻越导墙时淤积在冲沙槽内,使电站进水口与排沙底孔拉沙水流间形成一个隔断,起到截沙槽的作用。原方案试验成果表明,在“冲沙槽+排沙底孔”的组合方案条件下,当排沙底孔泄洪排沙时,电站进水口区域的水流流速小,排沙能力弱,试验观测到冲刷漏斗发生坝0+00.0m~坝0-10.0m范围以内,进水口前沿的泥沙不能排出库外,不能达到“门前清”的冲刷效果。
通过对多个方案的对比试验,最终选定了“格栅式排沙廊道+排沙底孔”的组合方案。该方案最突出的优点是:由于合理地调整了格栅宽度、格栅间距、排沙廊道底坡等参数,使排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方。在排沙廊道顶部格栅的作用下,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空,从而在电站进水口前沿、格栅式排沙廊道区域内形成一长条状的冲刷漏斗。泥沙排空后的区域形成一个隔断,起到了截沙槽的作用。
试验成果表明,在库水位2457m,排沙底孔下泄流量150m3/s时,排沙廊道周边的泥沙能在20分钟内排空(模型约4分钟),冲刷漏斗的长度方向在坝0+00.0m~坝0-35.0m之间。与原“冲沙槽+排沙底孔”方案相比,“格栅式排沙廊道+排沙底孔”方案的水流挟沙能力更强、冲刷漏斗的范围更大,达到了电站进水口“门前清”的理想效果。
2.2 B工程模型试验成果。
B水电工程是以发电为主要的水电工程。坝址河段多年平均悬移质输沙量1209万t,推移质输沙量190万t,坝址悬移质平均含沙量2.97Kg/m3。床沙干容重γs=2.56t/m3;Cs1断面、Cs2断面中值粒径d50分别为19.0mm、14.0mm,平均粒径dpj分别为19.7mm、16.7mm。
电站首部枢纽由泄洪表孔、排沙底孔、冲沙槽、非溢流坝段及进水口等建筑物组成。大坝坝轴线位于峡谷出口处。河床布置3孔泄洪表孔,孔口尺寸(宽×高)为8.0m×13.0m,堰顶高程1269.0m;河床左侧主河槽布置1孔排沙底孔,孔口尺寸(宽×高)为6.0m×10.0m,底板高程1257.00m,承担泄洪与溯源拉沙任务。
在A工程模型试验成果的基础上,我们在B工程上采用格栅式排沙底孔方案,通过模型试验调整格栅的尺寸及格栅间距、排沙廊道底坡、排沙廊道长度等参数。冲刷试验成果表明:控制上游库区水位1276 m,在冲沙流量100m3/s、250 m3/s和600 m3/s时,开启格栅式排沙底孔,运行32分钟(模型约4分钟),在电站进水口前沿、排沙廊道内及周边区域的泥沙均能排空,冲刷漏斗范围在坝0+00.0m~坝0-30.0m之间,同样达到了电站进水口“门前清”的理想效果。
3. 格栅式排沙底孔体型
格栅式排沙底孔可分为两个部分:
(1)常规类型的排沙底孔;
(2)带有格栅顶板的排沙廊道。根据电站进水口与枢纽布置的不同,排沙廊道的轴线与排沙底孔的轴线可以成0°~90°夹角。排沙廊道的靠进水口一侧的边墙应高于另一侧边墙,同时也应高于电站进水口底板,边墙高度可根据工程具体情况确定,边墙顶部也可以设计成“Γ”型,以利于拦截泥沙。
4. 格栅式排沙底孔泄流能力
受格栅式排沙廊道的影响,格栅式排沙底孔的泄流能力小于常规类型的排沙底孔。由于排沙廊道内水力条件复杂,流态紊乱,目前无法计算格栅式排沙底孔的泄流能力,只能通过模型试验测试。
以A工程为例:A工程的格栅式排沙廊道的尺寸为:b=5m,d=2m,e=1m,i=0.1667,L=35m。排沙底孔的体型为:平底,进口顶曲线为椭圆曲线,长半轴4.5m,短半轴1.5m,出口断面为5m×3.5m(宽×高)。
通过泄流能力试验,得到格栅式排沙底孔自由出流时的流量计算式为:
Q=61.7099H0.4951,式中:H=排沙底孔底板以上总水头-闸门开高。
流量系数计算式为:μ=0.7961/H0.0049。
因此,A工程在正常运行条件下,格栅式排沙底孔的流量系数取值为μ=0.783~0.790。
5. 结语
电站进水口的取水排沙历来是水电工作者十分关注的问题。为了保证电站进水口不产生推移质淤沙,减少粗沙过机,本文进行了有益的探索。本文在2个电站进水口排沙底孔泥沙模型试验的基础上,提出了一种 “格栅式排沙廊道+排沙底孔”的组合型式(简称格栅式排沙底孔)。即:在电站进水口前沿设置一道格栅式排沙廊道,排沙底孔与格栅式排沙廊道连通。当排沙底孔泄洪排沙时,排沙底孔的进水水流均匀分布于整个排沙廊道的上方,在排沙廊道顶部格栅的作用下,水流在排沙廊道内及其周边形成螺旋流或结构紊乱的涡流,大大增强了水流的挟沙能力,使淤积在排沙廊道及周边区域的泥沙迅速排空。在电站进水口前沿、格栅式排沙廊道区域内形成一长条状的冲刷漏斗。泥沙排空后的区域形成一个隔断,起到了截沙槽的作用,达到电站进水口“门前清”的效果,较好地解决了工程实际问题。格栅式排沙底孔对其他同类型工程具有一定的借鉴作用,也值得今后对其体型进行深入的研究。
[文章编号]1619-2737(2010)02-19-05