论文部分内容阅读
近年来,沸沸扬扬的物联网概念开始进入人们的视野,物联网是继计算机、互联网和移动通信之后的又一次信息产业的革命性发展。本文主要介绍了基于物联网架构的智能交通信号采集与控制体系的具体实现。
一、概述
随着经济的发展和社会的进步,城市人口增多,汽车的数量持续增加,交通拥挤和堵塞现象日趋严重,由此引发的环境噪声、大气污染、能源消耗等已经成为现在全球各工业发达国家和发展中国家面临的严峻问题。智能交通系统作为近十年大规模兴起的改善交通堵塞减缓交通拥挤的有效技术措施,越来越受到国内外政府决策部门和专家学者的重视,在许多国家和地区也开始了广泛的应用。
物联网时代的智能交通,全面涵盖了信息采集、动态诱导、智能管控等环节。通过对机动车信息和路况信息的实时感知和反馈,在GPS、RFID、GIS(地理信息系统)等技术的集成应用和有机整合的平台下,实现了车辆从物理空间到信息空间的唯一性双向交互式映射,通过对信息空间的虚拟化车辆的智能管控实现对真实物理空间的车辆和路网的“可视化”管控。
二、智能交通系统的模型框架
基于物联网架构的智能交通体系综合采用线圈、微波、视频、地磁检测等固定式的多种交通信息采集手段,结合出租车、公交及其他勤务车辆的日常运营,采用搭载车载定位装置和无线通讯系统的浮动车检测技术,实现路网断面和纵剖面的交通流量、占有率、旅行时间、平均速度等交通信息要素的全面全天候实时获取。通过路网交通信息的全面实时获取,利用无线传输、数据融合、数学建模、人工智能等技术,结合警用GIS系统,实现交通堵塞预警、公交优先、公众车辆和特殊车辆的最优路径规划、动态诱导、绿波控制和突发事件交通管制等功能。通过路网流量分析预测和交通状况研判,为路网建设和交通控制策略调整、相关交通规划提供辅助决策和反馈。
这种架构下的智能交通体系通过路网断面和纵剖面的交通信息的实时全天候采集和智能分析,结合车载无线定位装置和多种通讯方式,实现了车辆动态诱导、路径规划、信号控制系统的智能绿波控制和区域路网交通管控,为新建路网交通信息采集功能设置和设施配置提供规范和标准,便于整个交通信息系统的集成整合,为大情报平台提供服务等功能。
美国是应用ITS较为成功的国家。1995年美国交通部出版的“国家智能交通系统项目规划”,明确规定了智能交通系统的7大领域和29个用户服务功能。7大领域包括出行和交通管理系统、出行需求管理系统、公共交通运营系统、商用车辆运营系统、电子收费系统、应急管理系统、先进的车辆控制和安全系统。下面结合美国成功的ITS案例,简要说明物联网下的智能交通系统模型。
(1)中心型子系统。该子系统包括交通管理子系统、突发事件管理子系统、收费管理子系统、商用车辆管理子系统、维护与工程管理子系统、信息服务提供子系统、尾气排放管理子系统、公共交通管理子系统、车队及货运管理子系统及存档数据管理子系统10个子系统。该类子系统的共同特点是空间上的独立性,即在空间位置的选择上不受交通基础设施的制约。这类子系统与其它子系统的联络通畅依赖于有线通讯。
(2)区域型子系统。该子系统包括道路子系统、安全监控子系统、公路收费子系统、停车管理子系统和商用车辆核查子系统5个子系统属于区域类型。这类子系统通常需要进入路边的某些具体位置来安装或维护诸如检测器、信号灯、程控信息板等设施。区域型子系统一般要与一个或多个中心型子系统以有线方式连接,同时还往往需要与通过其所部署路段的车辆进行信息交互。
(3)旅行者子系统。该类子系统以旅行者或旅行服务业经营者为服务对象,运用智能交通系统的有关功能实现对多式联运旅行的有效支持。远程旅行支持子系统和个人信息访问子系统属于旅行者子系统。旅行者子系统可通过有线或无线方式与其它类型的子系统间进行直接的信息传递。
(4)车辆型子系统。该类子系统的特点是安装在车辆上。根据载体车辆的种类,车辆型子系统又可细分为普通车辆子系统、紧急车輛子系统、商用车辆子系统、公交车辆子系统和维护与工程车辆子系统。这些子系统可根据需要与中心型子系统、区域型子系统及旅行者子系统进行无线通讯,也可与其它载体车辆进行车辆间通讯。
三、物联网智能交通应用举例 ——北京智能交通物联网
荣获国家科技进步一等奖的北京市公安局公安交通管理局“城市智能交通管理指挥控制系统”,让首都交通管理步入科技时代。十年来,首都交管部门构建了以“一个中心、三个平台、八大系统”为核心的智能交通管理系统体系框架,高度集成了视频监控、单兵定位、122接处警、GPS警车定位、信号控制、集群通信等近百个应用子系统,达到了733T的实时海量异构数据的高度融合,强化了智能交通管理的实战能力。
在北京的环路上,安装着157个高清摄像头,它们可以自动记数,统计交通流量;当道路上发生事故、拥堵、路面积水、道路遗洒等9种意外事件时,系统便会自动对意外事件全程录像、自动报警。
在北京的快速路、主干路网中,有上万个检测线圈,它们埋在接近路口的地面下,通过电子感应传递到检测器,就像城市的神经末梢,24小时自动采集路面交通流量、流速、占有率等运行数据。此外,超声波、微波、视频等科技设备也随时检测着交通信息,它们通过系统后台的整合、分析、处理,除了以图形的方式在地图上显示出实时动态路况信息外,还可以准确发现道路上的异常况。
这套交通流量检测系统还能自动与前四周的相关数据进行对比,如果车流量、拥堵情况超过了历史平均的常量,系统便自动发出警告提示,交管部门便可以据此部署警力。
结语
物联网技术在智能交通控制领域的应用,将全面提升智能交通的管控水平和信息服务水平,实现从现场物理实体的管控到信息空间中虚拟镜像的管控。随着政府的大力扶持与技术和标准的成熟,智能交通物联网会是物联网发展的重要领域,将朝着大规模网络化、集成化和面向服务化发展,成为智慧城市的重要组成部分。
一、概述
随着经济的发展和社会的进步,城市人口增多,汽车的数量持续增加,交通拥挤和堵塞现象日趋严重,由此引发的环境噪声、大气污染、能源消耗等已经成为现在全球各工业发达国家和发展中国家面临的严峻问题。智能交通系统作为近十年大规模兴起的改善交通堵塞减缓交通拥挤的有效技术措施,越来越受到国内外政府决策部门和专家学者的重视,在许多国家和地区也开始了广泛的应用。
物联网时代的智能交通,全面涵盖了信息采集、动态诱导、智能管控等环节。通过对机动车信息和路况信息的实时感知和反馈,在GPS、RFID、GIS(地理信息系统)等技术的集成应用和有机整合的平台下,实现了车辆从物理空间到信息空间的唯一性双向交互式映射,通过对信息空间的虚拟化车辆的智能管控实现对真实物理空间的车辆和路网的“可视化”管控。
二、智能交通系统的模型框架
基于物联网架构的智能交通体系综合采用线圈、微波、视频、地磁检测等固定式的多种交通信息采集手段,结合出租车、公交及其他勤务车辆的日常运营,采用搭载车载定位装置和无线通讯系统的浮动车检测技术,实现路网断面和纵剖面的交通流量、占有率、旅行时间、平均速度等交通信息要素的全面全天候实时获取。通过路网交通信息的全面实时获取,利用无线传输、数据融合、数学建模、人工智能等技术,结合警用GIS系统,实现交通堵塞预警、公交优先、公众车辆和特殊车辆的最优路径规划、动态诱导、绿波控制和突发事件交通管制等功能。通过路网流量分析预测和交通状况研判,为路网建设和交通控制策略调整、相关交通规划提供辅助决策和反馈。
这种架构下的智能交通体系通过路网断面和纵剖面的交通信息的实时全天候采集和智能分析,结合车载无线定位装置和多种通讯方式,实现了车辆动态诱导、路径规划、信号控制系统的智能绿波控制和区域路网交通管控,为新建路网交通信息采集功能设置和设施配置提供规范和标准,便于整个交通信息系统的集成整合,为大情报平台提供服务等功能。
美国是应用ITS较为成功的国家。1995年美国交通部出版的“国家智能交通系统项目规划”,明确规定了智能交通系统的7大领域和29个用户服务功能。7大领域包括出行和交通管理系统、出行需求管理系统、公共交通运营系统、商用车辆运营系统、电子收费系统、应急管理系统、先进的车辆控制和安全系统。下面结合美国成功的ITS案例,简要说明物联网下的智能交通系统模型。
(1)中心型子系统。该子系统包括交通管理子系统、突发事件管理子系统、收费管理子系统、商用车辆管理子系统、维护与工程管理子系统、信息服务提供子系统、尾气排放管理子系统、公共交通管理子系统、车队及货运管理子系统及存档数据管理子系统10个子系统。该类子系统的共同特点是空间上的独立性,即在空间位置的选择上不受交通基础设施的制约。这类子系统与其它子系统的联络通畅依赖于有线通讯。
(2)区域型子系统。该子系统包括道路子系统、安全监控子系统、公路收费子系统、停车管理子系统和商用车辆核查子系统5个子系统属于区域类型。这类子系统通常需要进入路边的某些具体位置来安装或维护诸如检测器、信号灯、程控信息板等设施。区域型子系统一般要与一个或多个中心型子系统以有线方式连接,同时还往往需要与通过其所部署路段的车辆进行信息交互。
(3)旅行者子系统。该类子系统以旅行者或旅行服务业经营者为服务对象,运用智能交通系统的有关功能实现对多式联运旅行的有效支持。远程旅行支持子系统和个人信息访问子系统属于旅行者子系统。旅行者子系统可通过有线或无线方式与其它类型的子系统间进行直接的信息传递。
(4)车辆型子系统。该类子系统的特点是安装在车辆上。根据载体车辆的种类,车辆型子系统又可细分为普通车辆子系统、紧急车輛子系统、商用车辆子系统、公交车辆子系统和维护与工程车辆子系统。这些子系统可根据需要与中心型子系统、区域型子系统及旅行者子系统进行无线通讯,也可与其它载体车辆进行车辆间通讯。
三、物联网智能交通应用举例 ——北京智能交通物联网
荣获国家科技进步一等奖的北京市公安局公安交通管理局“城市智能交通管理指挥控制系统”,让首都交通管理步入科技时代。十年来,首都交管部门构建了以“一个中心、三个平台、八大系统”为核心的智能交通管理系统体系框架,高度集成了视频监控、单兵定位、122接处警、GPS警车定位、信号控制、集群通信等近百个应用子系统,达到了733T的实时海量异构数据的高度融合,强化了智能交通管理的实战能力。
在北京的环路上,安装着157个高清摄像头,它们可以自动记数,统计交通流量;当道路上发生事故、拥堵、路面积水、道路遗洒等9种意外事件时,系统便会自动对意外事件全程录像、自动报警。
在北京的快速路、主干路网中,有上万个检测线圈,它们埋在接近路口的地面下,通过电子感应传递到检测器,就像城市的神经末梢,24小时自动采集路面交通流量、流速、占有率等运行数据。此外,超声波、微波、视频等科技设备也随时检测着交通信息,它们通过系统后台的整合、分析、处理,除了以图形的方式在地图上显示出实时动态路况信息外,还可以准确发现道路上的异常况。
这套交通流量检测系统还能自动与前四周的相关数据进行对比,如果车流量、拥堵情况超过了历史平均的常量,系统便自动发出警告提示,交管部门便可以据此部署警力。
结语
物联网技术在智能交通控制领域的应用,将全面提升智能交通的管控水平和信息服务水平,实现从现场物理实体的管控到信息空间中虚拟镜像的管控。随着政府的大力扶持与技术和标准的成熟,智能交通物联网会是物联网发展的重要领域,将朝着大规模网络化、集成化和面向服务化发展,成为智慧城市的重要组成部分。