论文部分内容阅读
针对现存的基于自适应邻域的多视图聚类算法没有考虑噪声和共识图信息损失的问题,提出一种基于自适应邻域的鲁棒多视图聚类(RMVGC)算法。首先,为了避免噪声和异常值对数据的影响,通过鲁棒主成分分析模型(RPCA)从原始数据中学习多个干净的低秩数据;其次,用自适应邻域学习直接融合多个干净的低秩数据来得到一个干净的共识关系图,从而减少图融合过程中的信息丢失。实验结果表明,所提RMVGC算法的标准化互信息(NMI)在MRSCV1、BBCSport、COIL20、ORL和UCI digits数据集上比目前流行的