论文部分内容阅读
由于近红外光谱数据的多重共线性,特征波长选择一直是近红外光谱分析技术的重要研究内容。以108个土壤样本光谱数据和土壤有机质(SOM)含量为研究对象,以连续投影算法(SPA)、间隔偏最小二乘法(IPLS)、竞争自适应重加权采样法(CARS)三种典型的特征波长选择算法进行近红外光谱波长选择和土壤有机质含量建模。研究结果表明,基于上述三种方法提取的特征波长所建立的模型预测能力均优于全谱模型。其中,基于SPA算法的MLR预测模型精度最优,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0.970 2和