论文部分内容阅读
建立的数学模型为 ^y =393.2 +4 .7x1+3.4x2 +6 .2x3 +1.0x4 +5 .3x1x2 - 7.8x1x3 - 7.0x1x4 +5 .8x2 x3 - 7.8x2 x4 +5 .3x3 x4- 2 .9x12 - 1.2x2 2 - 12 .3x3 2 - 1.1x4 2 。回归分析达到极显著水平 (R =0 .90 13,α =0 .0 1) ,模型预测产量与实际吻合较好。根据对产量函数模型的计算机模拟寻优结果 ,结合清水河流域生产实际 ,得出纤维亚麻麻茎单产 6 0 0 0kg/hm2 的技术方案为 :施纯氮 85 .5~ 97.5kg/hm2 ,施P2 O56 3.0~ 82 .5kg/hm2 ,密度为 195 0~ 2 10 0万有效粒 /hm2 。其 95 %的置信域为 :ya=42 5 .2± 2 4.6。
The mathematical model is established as y = 393.2 +4 .7x1 + 3.4x2 +6 .2x3 + 1.0x4 +5 .3x1x2 - 7.8x1x3 - 7.0x1x4 +5 .8x2 x3 - 7.8x2 x4 +5 .3x3 x4-2. 9x12 - 1.2x2 2 - 12 .3x3 2 - 1.1x4 2. Regression analysis reached an extremely significant level (R = 0.90 13, α = 0. 01), and the predicted yield of the model is in good agreement with the actual. According to the result of computer simulation of yield function model and the actual production in Qingshui River Basin, the technical scheme of yielding 60000kg / hm2 of flax stems was obtained: 85.5 ~ 97.5kg / hm2 P2 O56 3.0 ~ 82 .5kg / hm2, the density of 195 0 ~ 210000 effective grain / hm2. Its 95% confidence level is: ya = 42 5 .2 ± 2 4.6.