,EXTRAPOLATION METHODS FOR COMPUTING HADAMARD FINITE-PART INTEGRAL ON FINITE INTERVALS

来源 :计算数学(英文版) | 被引量 : 0次 | 上传用户:willing_6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,we present the composite rectangle rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular keel 1/(x-s)2 and we obtain the asymptotic expansion of error function of the middle rectangle rule.Based on the asymptotic expansion,two extrapolation algorithms are presented and their convergence rates are proved,which are the same as the Euler-Maclaurin expansions of classical middle rectangle rule approximations.At last,some numerical results are also illustrated to confirm the theoretical results and show the efficiency of the algorithms.
其他文献
我国是荔枝的起源中心,拥有丰富的荔枝种质资源。野生荔枝是荔枝改良利用的丰富基因源,然而至今尚未见对野生荔枝遗传多样性系统研究与评价的报道。本研究分别采集海南霸王岭野
近年来,黑龙江省嫩江县甜菜含糖率有逐年上升的趋势,1988、1989、1990与1991年甜菜含糖率分别为16.8%、17.6%、18.0%与18.6%,特别是1991年在全省含糖率普遍较低的情况下,含糖率
In this paper,we present a block Lanczos method for solving the large-scale CDT subproblem.During the algorithm,the original CDT subproblem is projected to a sm
In this paper,we couple the parareal algorithm with projection methods of the trajectory on a specific manifold,defined by the preservation of some conserved qu
In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters) rather than spread arbitrarily throughout th
This paper proposes an efficient ADER (Arbitrary DERivatives in space and time) discontinuous Galerkin (DG) scheme to directly solve the Hamilton-Jacobi equatio
近几年随着蔬菜栽培中氮肥施用量的增加,蔬菜硝酸盐积累与氮素利用率降低的问题逐渐突出。硝态氮是植物吸收的主要氮源,根系对硝态氮的吸收主要是通过硝转运蛋白NRT进行的,其
辣椒(CaPsicumannun?L.)是一种非常重要的蔬菜作物,营养价值和经济价值都很高。辣椒具有显著的杂种优势,杂种一代的生产主要利用自交系间人工授粉和雄性不育。但这两周年方法
In this paper we propose a finite element method for solving elliptic equations with observational Dirichlet boundary data which may subject to random noises.Th
We consider the rank minimization problem from quadratic measurements,i.e.,recovering a rank r matrix X ∈ Rn×r from m scalar measurements yi =aTiXXT ai,ai ∈R