论文部分内容阅读
在全卷积孪生网络跟踪算法(SiamFC)的基础上,提出一种融合注意力机制的孪生网络目标跟踪算法。在网络模板分支,通过融合注意力机制,由神经网络学习模板图像的通道相关性和空间相关性,进而增大前景贡献,抑制背景特征,提升网络对正样本特征的辨别力;同时,使用VggNet-19网络提取模板图像的浅层特征和深层特征,两种特征自适应融合。在OTB2015和VOT2018数据集上得到的实验结果表明,与SiamFC相比,所提算法能够更好地应对运动模糊、目标漂移和背景多变等问题,取得了更高的准确率和成功率。