论文部分内容阅读
为解决支持向量机算法(Support Vector Machine,SVM)的核函数参数及惩罚因子参数选取的盲目性,利用果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)对 SVM中参数进行优化。提出基于 FOA 的 SVM故障诊断算法,并对汽轮机故障实验数据进行模式识别。该算法能对 SVM相关参数自动寻优,且能达到较理想的全局最优解。通过与常用的粒子群算法(Particle Swarm Optimization,PSO)与遗传算法(Genetic Algorithm