论文部分内容阅读
针对马铃薯表面灰度不均匀、纹理复杂不易定位的问题,通过采集类Haar(Haar-like)、局部二值模式(Local Binary Pattern,LBP)和方向梯度直方图(Histogram of Oriented Gradient,HOG),提出了基于级联自适应提升(Cascade Adaptive Boosting,Cascade Adaboost)分类器的马铃薯定位方法。同时,针对背景区域易误判为马铃薯区域的问题,提出了一种候选区域二次筛选法。结果表明:优化后,利用训练好的类Haar+Cas