论文部分内容阅读
在石油勘探开发过程中会因各种原因造成储层损害,降低油井产量甚至停产,必须对损害储层进行准确定量诊断的基础上采取相应的解堵措施,提高或恢复油井产量.人工神经网络法是进行储层损害诊断较好的方法,但目前仅限于BP神经网络,或改进的BP神经网络的应用.本文通过对BP神经网络和径向基函数(RBF)网络的对比表明,径向基函数(RBF)网络具有收敛速度快、预测精度高等优点,并在确定影响储层敏感性和各损害类型因素的基础上,分别收集了各数据70组以上,然后进行了径向基(RBF)网络训练和应用,分别建立了径向基(RBF)神经